Metadatos derivados de la publicación original en Elsevier B.V.
Resumen
We show that all maximal almost disjoint families have pseudocompact Vietoris hyperspace if and only if $\mathsf{MA}_\mathfrak c (\mathcal P(\omega)/\mathrm{fin})$ holds. We further study the question whether there is a maximal almost disjoint family whose hyperspace is pseudocompact and prove that consistently such families do not exist \emph{genericaly}, by constructing a consistent example of a maximal almost disjoint family $\mathcal A$ of size less than $\mathfrak c$ whose hyperspace is not pseudocompact.
O. Guzmán, M. Hrušák, V. O. Rodrigues, S. Todorčević, A. H.Tomita, Maximal almost disjoint families and pseudocompactness of hyperspaces, Topology Appl., 305 (2022), Paper No. 107872, 24 pp. https://doi.org/10.1016/j.topol.2021.107872