Universidad Nacional Autónoma de México. Centro de Ciencias Matemáticas Ars Mathematica Contemporanea; https://amc-journal.eu/index.php/amc/article/view/438
Resumen
Let F be a (possibly non-simple) hypergraph and let forb(m; F) denote the maximum number of edges a simple hypergraph with m vertices can have if it doesn't contain F as a subhypergraph. A conjecture of Anstee and Sali predicts the asymptotic behaviour of forb(m; F) for fixed F. In this paper we prove that even finding this predicted asymptotic behaviour is an NP-hard problem, meaning that if the Anstee-Sali conjecture were true, finding the asymptotics of forb(m; F) would be NP-hard.
M. Raggi, Forbidden configurations: finding the number predicted by the Anstee-Sali conjecture is NP-hard, Ars Mathematica Contemporanea, vol. 10 (2015), 1-8, https://repositorioccm.matmor.unam.mx/handle/123456789/186
Licencia Creative Commons
El uso de este contenido digital se rige por una licencia Creative Commons BY 3.0 Internacional, https://creativecommons.org/licenses/by/3.0/legalcode.en/, fecha de asignación de la licencia 2015-01-24.