Universidad Nacional Autónoma de México. Centro de Ciencias Matemáticas Revista Colombiana de Matemáticas; https://revistas.unal.edu.co/index.php/recolma/article/view/102612
Resumen
Ordinary multiplication of natural numbers can be generalized to a ternary operation by considering discrete volumes of lattice hexagons. Withthis operation, a natural notion of ‘3-primality’ – primality with respect to ternary multiplication – is defined, and it turns out that there are very few 3-primes. They correspond to imaginary quadratic fields Q(√−n), n > 0, with odd discriminant and whose ring of integers admits unique factorization. We also describe how to determine representations of numbers as ternary products and related algorithms for usual primality testing and integer factorization.
A. Bingham, Ternary arithmetic, factorization and the class number one problem, Revista Colombiana de Matemáticas, vol. 55, (2021), no. 2, 149-166, https://repositorioccm.matmor.unam.mx/handle/123456789/173
Licencia Creative Commons
El uso de este contenido digital se rige por una licencia Creative Commons BY 4.0 Internacional, https://creativecommons.org/licenses/by/4.0/legalcode.es/, fecha de asignación de la licencia 2021-01-01.